Comparison of Color Features for Image Retrieval

نویسنده

  • S. R. Kodituwakku
چکیده

Content based image retrieval (CBIR) systems are used for automatic indexing, searching, retrieving and browsing of image databases. Color is one of the important features used in CBIR systems. An experimental comparison of a number of different color descriptors for content-based image retrieval is presented in this paper. Color histograms, color moments and color coherent vector (CCV) are considered for retrieval. The primary goal is to determine which color descriptor or combination of color descriptors is most efficient in representing the similarity of color images. In this paper, we first present the comparison of individual color descriptors and then the comparison of combined color descriptors. For the experiments, five different publicly available image databases are used and the retrieval performance of the features is analyzed in detail. This allows for a direct comparison of all features considered in this work and furthermore it will allow a comparison of newly proposed features to these in the future. The article is concluded by stating which features perform well for what type of data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Color Features Performance Comparison for Image Retrieval

This paper proposes a comparison of color features for image retrieval. In particular the UCID image database has been employed to compare the retrieval capabilities of different color descriptors. The set of descriptors comprises global and spatially related features, and the tests show that HSV based global features provide the best performance at varying brightness and contrast settings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010